Retrofitting RABS to existing aseptic filling lines

Clive Brading
Associate Vice-President, Global Manufacturing Quality
Operations
Sanofi
7th October 2015

The challenge

 How can the industry adapt existing equipment to include effective barrier systems without going to full isolator technology?

Why not go straight to isolators?

- Line design
- Line capacity
- Cost
- Time

Sanofi aseptic filling capability

- More than 100 conventional aseptic filling lines globally
- Need for more capacity to meet growing product demand

Sanofi strategy

- New lines
 - Full isolation technology
- Existing lines
 - Open active RABS system
 - Rigid barrier enclosure with glove ports
 - Doors kept closed in routine operation / sanitization & line clearance if opened / automatic recording of door opening
 - Introduction of components through a system to protect them from exposure to surrounding Class B outside the barriers

"Open" & "Active" RABS

Sanofi definition

- "Open": class A air exits to class B zone through space on the bottom part of filling line
- "Active": dedicated AHU for RABS enclosure

Gloves

 Could be "long" or "short" sleeve

 Preferred integrity test in place from outside

- Key criteria before starting
 - Satisfactory history of operation
 - Good environmental monitoring results and trends
 - Routine Media fills successful
 - Limited number of technical issues

- Step 1: Technical evaluation of filling line
 - Check feasibility of any operation that has to be performed with doors kept closed (use 3D CAD)
 - Machine set-up or change-over
 - Routine production
 - Interventions during production
 - Environmental monitoring (sampling etc...)
 - "Tight connection" of all access hatches to all mechanical parts located on the main frame of equipment,
 - Review of age and maintenance history of equipment

- Step 2: Review surrounding Class B area
 - Ensure full access around filling equipment for manufacturing and maintenance operation
 - Notably easy access to the rear side of filling machine which is necessary for set-up and troubleshooting
 - Sufficient space to install a dedicated air handling unit (AHU) to achieve Active RABS design
 - Material and equipment flow and handling
 - Decontamination

- Step 3: Mock up
 - Need to check feasibility of any operation that has to be performed with the doors kept closed
 - Must account for a range of operators
 - Dummy machine base with dummy key components
 - A frame with guards and ports
 - Built in cheap and easy to modify materials
 - Full scale to model future equipment and layout

- Step 3: Mock up (continued)
 - Feasibility criteria
 - Operation to be performed in a 100% reliable manner by any qualified operator or technician
 - Number and position of gloves port must be optimized without causing damage to any machine part (e.g. gloves)
 - Interventions can be made in a timeframe that is acceptable for line operational performance

Practical Examples

- Case study 1: Aseptic filling operation in Italy
 - Multiple conventional filling lines
 - Manufacture of life saving / medically necessary products
 - Running at close to full capacity

Case study 1 – Solution

- Technical solution developed
 - Install barriers with glove ports around existing filling line
 - Rapid implementation
 - Possible to do the work in planned shutdowns
 - Work could be phased
 - Significantly lower cost than a full new line with RABS or isolator

Case study 1 – Ergonomic study

- Intervention review
 - Reviewed all the type, location and frequencies of interventions

	1 ogni sei m	iesi	1:buona c	con 2 guanti	
	2 ogni mese		1	con un guanto	
	3 ogni settimana		3:non raggiungibile		Observation of manufacturing
					l
			facilità		operations used in risk analysis
Attività	Frequenza	ID punto		fattore rischio Azioni	operations asea in his analysis
Regolazione scivolo combiseals	1	1	2	2	1) Eroquency of interventions
Regolazione coclea ingresso flaconi	1	2	3	3	1)Frequency of interventions
Regolazione testine ghieratrice	2	3	1	2	
Sbloccaggio ghiera su scivolo	2	1	2	4	2)Area of interventions
sostituzione siringa	1	4	3	3	2// 11 24 31 111221 7211213113
sostituzione acquasant	1	4	3	3	
sostituzione filtrini	3	4	3	9 gestione	del livello acquasant con un allarme in caso di eccessiva aprtura valvola.
centratura aghi	3	5	1	3	
sostituzione aghi	3	5	1	3	
sistemazione perno siringa	1	4	3	3	
regolazione fotocellula presenza flaconi	2	6	2	4	
regolazione fotocellula minimo accumulo nastro	2	7	2	4	
regolazione fotocellula massimo accumulo nastro	2	8	3	6	
regolazione contrasto inferiore stellare ingresso flaconi	1	6	3	3	
regolazione cuscinetti guida	1	5,9	3	3	
rimozione flacone caduto nastrino	2	7	2	4	
rimozione flacone caduto nastrino	2	8	3	6 valutare	se il flacone caduto può essere raccolto nel punto 7
rimozione flacone caduto coclea	3	2	3	9 spostare	drenaggio ed inserire un guanto supplementare di fronte alla coclea
rimozione flacone caduto polmone ingresso	3	10->11	2	6	
Controllo dosaggio	3	8	3	9 inserire	un dispensatore di ghiere sulla stazione combiseal
monitoraggio microbiologico esposizione	3	12	2	6	
monitoraggio microbiologico aspirazione	3	13	1	3	
monitoraggio microbiologico contatto	3	5	1	3	

Case study 1 – Ergonomic study

Case study 1 – Solutions implemented

- Installation of double gloves
 - Used near critical points that need most frequent intervention (e.g. filling needles)

- Loading of components
 - Sealed bag of stopper is put on a perforated surface under Laminar Air Flow
 - By the use of the gloves the bag is cut and emptied into the hopper through the chute

Case study 1 – Limitations

- Limitations of RABS approach
 - Difficulty to access the filling pumps / reservoir
 - Means having open doors at least in the set up phase

Operator side

Practical Examples

- Case study 2: Aseptic filling operation in France
 - Manufacture of lyophilised vaccines
 - Good example of use of a full size mock up

Practical Examples

- Case study 3: Aseptic filling operation in Germany
 - Older design filling line
 - Involved a "ground up" rebuild

Case study 3 – Challenges

Uncovered neon lights in class A

Sliding doors: very large + move into unclassified area

Huge opening beneath doors

No stopper container → Operator leans over hopper during re-fill

Stopper hopper very close to class B Sorting wheel for single-hole plungers in place

Case study 3 – Challenges

Case study 3 – Solutions

improved visibility and reachability

Optimized position of filling pipes

→ behind pumps

clamps for filling tubes

MPC-couplings → safe aseptic connections

fewer parts in class A (no peristaltic pump, filling tubes, output for empties)

Case study 3 – Solutions

Contained neon lights in class A

13 gloves at critical positions

Upgrade monitoring systems

Segmented class A area (Cap + stopper hopper)

LF ceiling lower then room

→ easier to clean, optimized air flow

movable vessel protected by vertical LF

Additional Class A outside filling machine

→ Sufficient room for sterile containers during set up

When is a RABS retrofit maybe not the best solution?

- If the line does not perform well currently
- If the ergonomic layout of the line limits glove access
- If the line concept and design cannot be easily adapted
- If the line is becoming obsolete

Conclusions

- Retrofitting an existing aseptic filling line is possible and can:
 - Save time
 - Reduce cost
 - Improve line aseptic performance

 Success only comes from careful planning and study of the existing line and the proposed solution

Acknowledgements

I would like to thank the following Sanofi colleagues for their input to this presentation:

- Alessandro Casu
- Philippe Lhopital
- Thierry Marin
- Harald Krempel

Thank you!

Clive BRADING

E-Mail: clive.brading@sanofi.com

Cell: +44 (0)7736 336435

Office: +44 (0)1477 538002

